Integrat Respir Med
Volume 1, 2020
Topical Issue - Integrative Respiratory Medicine for COVID-19
Article Number 1
Number of page(s) 5
Published online 29 September 2020
  • Huang X, Wei F, Hu L, Wen L, Chen K (2020), Epidemiology and Clinical Characteristics of COVID-19. Arch Iran Med 23, 4, 268–271. [CrossRef] [PubMed] [Google Scholar]
  • Greenland JR, Michelow MD, Wang L, London MJ (2020), COVID-19 Infection: Implications for Perioperative and Critical Care Physicians. Anesthesiology 132, 6, 1346–1361. [Google Scholar]
  • Lu R, Zhao X, Li J, et al. (2020), Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 10224, 565–574. [CrossRef] [PubMed] [Google Scholar]
  • Al Johani S, Hajeer AH (2016), MERS-CoV diagnosis: An update. J Infect Public Health 9, 3, 216–219. [CrossRef] [PubMed] [Google Scholar]
  • Chafekar A, Fielding BC (2018), MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses 10, 2, 93. [Google Scholar]
  • Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC (2017), Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis 17, 1, 144. [CrossRef] [PubMed] [Google Scholar]
  • Rabaan AA, Bazzi AM, Al-Ahmed SH, Al-Tawfiq JA (2017), Molecular aspects of MERS-CoV. Front Med 11, 3, 365–377. [Google Scholar]
  • Wu D, Wu T, Liu Q, Yang Z (2020), The SARS-CoV-2 outbreak: What we know. Int J Infect Dis 94, 44–48. [CrossRef] [PubMed] [Google Scholar]
  • Rabaan AA, Al-Ahmed SH, Haque S (2020), SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez Med 28, 2, 174–184. [PubMed] [Google Scholar]
  • Xie X, Muruato A, Lokugamage KG (2020), An Infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe 27, 5, 841–848. [CrossRef] [PubMed] [Google Scholar]
  • Hasöksüz M, Kiliç S, Saraç F (2020), Coronaviruses and SARS-COV-2. Turk J Med Sci 50, SI-1:549–556. [Google Scholar]
  • Li H, Zhou Y, Zhang M, Wang H, Zhao Q, Liu J (2020), Updated Approaches against SARS-CoV-2. Antimicrob Agents Chemother 64, 6, e00483–20. [PubMed] [Google Scholar]
  • Bansal M (2020), Cardiovascular disease and COVID-19. Diabetes Metab Syndr 14, 247–250. [CrossRef] [PubMed] [Google Scholar]
  • Angel-Korman A, Brosh T, Glick K, Leiba A (2020), Covid-19, The kidney and hypertension. Harefuah 159, 231–234. [PubMed] [Google Scholar]
  • South AM, Diz DI, Chappell MC (2020), COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 318, 5, H1084–H1090. [PubMed] [Google Scholar]
  • Pal R, Bhansali A (2020), COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res Clin Pract 162, 108132. [CrossRef] [PubMed] [Google Scholar]
  • Jakovac Hrvoje (2020), COVID-19: is the ACE2 just a foe? Am J Physiol Lung Cell Mol Physiol 318, 5, L1025–L1026. [CrossRef] [PubMed] [Google Scholar]
  • Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ (2020), Chloroquine is a zinc ionophore. PLoS One 9, 10, e109180. [Google Scholar]
  • Vincent MJ, Bergeron E, Benjannet S (2005), Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2, 69. [CrossRef] [PubMed] [Google Scholar]
  • Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D (2020), Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 55, 4, 105932. [CrossRef] [PubMed] [Google Scholar]
  • Kakodkar P, Kaka N, Baig MN (2020), A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus 12, 4, e7560. [PubMed] [Google Scholar]
  • Shukla AM, Archibald LK, Wagle Shukla A, Mehta HJ, Cherabuddi K (2020), Chloroquine and hydroxychloroquine in the context of COVID-19. Drugs Context 9, 4–5. [Google Scholar]
  • Rubin EJ, Harrington DP, Hogan JW, Gatsonis C, Baden LR, Hamel MB (2020) The Urgency of Care during the Covid-19 Pandemic - Learning as We Go, N Engl J Med, NEJMe2015903. [Google Scholar]
  • Aboud M, Kaplan R, Lombaard J (2019), Dolutegravir versus ritonavir-boosted lopinavir both with dual nucleoside reverse transcriptase inhibitor therapy in adults with HIV-1 infection in whom first-line therapy has failed (DAWNING): an open-label, non-inferiority, phase 3b trial. Lancet Infect Dis 19, 3, 253–264. [CrossRef] [PubMed] [Google Scholar]
  • Lim J, Jeon S, Shin HY, et al. (2020), Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of Lopinavir/Ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci 35, 6, e79. [CrossRef] [PubMed] [Google Scholar]
  • Rubin EJ, Harrington DP, Hogan JW, Gatsonis C, Baden LR, Hamel MB (2020), The Urgency of Care during the Covid-19 Pandemic – Learning as We Go. N Engl J Med 382, 25, 2461–2462. [Google Scholar]
  • McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C (2020), Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 157, 104859. [CrossRef] [PubMed] [Google Scholar]
  • Zhao C, Li Y, Qiu W (2018), C5a induces A549 cell proliferation of non-small cell lung cancer via GDF15 gene activation mediated by GCN5-dependent KLF5 acetylation. Oncogene 37, 35, 4821–4837. [Google Scholar]
  • Tchesnokov EP, Feng JY, Porter DP, Götte M (2019), Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by Remdesivir. Viruses 11, 4, 326. [Google Scholar]
  • Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR (2020), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 55, 3, 105924. [CrossRef] [PubMed] [Google Scholar]
  • Li Z, Wang X, Cao D, Sun R, Li C, Li G (2020), Rapid review for the anti-coronavirus effect of remdesivir. Drug Discov Ther 14, 2, 73–76. [CrossRef] [PubMed] [Google Scholar]
  • Beigel JH, Tomashek KM, Dodd LE, et al. (2020), Remdesivir for the treatment of Covid-19 – preliminary report. N Engl J Med, [Google Scholar]
  • Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB (2020), Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020, [Google Scholar]
  • Atluri S, Manchikanti L, Hirsch JA (2020), Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: The Case for compassionate use. Pain Physician 23, 2, E71–E83. [PubMed] [Google Scholar]
  • McCreary EK, Pogue JM (2020), Coronavirus disease 2019 treatment: a review of early and emerging options. Open Forum Infect Dis 7, 4, ofaa105. [CrossRef] [PubMed] [Google Scholar]
  • Wang Y, Zhang D, Du G (2020), Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 10236, 1569–1578. [Google Scholar]
  • Blaising J, Polyak SJ, Pécheur EI (2014), Arbidol as a broad-spectrum antiviral: an update. Antiviral Res 107, 84–94. [CrossRef] [PubMed] [Google Scholar]
  • Haviernik J, Štefánik M, Fojtíková M (2018), Arbidol (Umifenovir): A broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses. Viruses 10, 4, 184. [Google Scholar]
  • Zhang J, Xie M, Xia L (2018), Sublytic C5b–9 Induces IL-23 and IL-36a production by glomerular mesangial cells via PCAF-mediated KLF4 acetylation in rat Thy-1 nephritis. J Immunol 201, 11, 3184–3198. [CrossRef] [PubMed] [Google Scholar]
  • Wang CH, Zhong Y, Zhang Y (2016), A network analysis of the Chinese medicine Lianhua-Qingwen formula to identify its main effective components. Mol Biosyst 12, 2, 606–613. [Google Scholar]
  • Zhao P, Yang HZ, Lv HY, Wei ZM (2014), Efficacy of Lianhuaqingwen capsule compared with oseltamivir for influenza A virus infection: a meta-analysis of randomized, controlled trials. Altern Ther Health Med 20, 2, 25–30. [PubMed] [Google Scholar]
  • Ling XY, Tao JL, Sun X, Yuan B (2020), Exploring material basis and mechanism of Lianhua Qingwen Prescription against coronavirus based on network pharmacology. Zhong Cao Yao 51, 7, 1723–1730. [Google Scholar]
  • Wang FC, Shen BX, He CY, Zhao WC, Nie SL (2020), Clinical efficacy and mechanism of Lianhua Qingwen granule on COVID-19 based on network pharmacology research. Pharm Clin Chin Materia Medica 36, 2, 93–101. [Google Scholar]
  • Hu K, Guan WJ, Bi Y, et al. (2020), Efficacy and safety of Lianhuaqingwen Capsules, a repurposed Chinese Herb, in patients with Coronavirus disease 2019: A multicenter, prospective, randomized controlled trial. Phytomedicine 153242. [Google Scholar]
  • Du HX, Zhou HF, Wan HF (2018), Antiviral effects and mechanisms of Yinhuapinggan granule against H1N1 influenza virus infection in RAW264.7 cells. Inflammopharmacology 26, 6, 1455–1467. [CrossRef] [PubMed] [Google Scholar]
  • Peng XQ, Zhou HF, Lu YY, Chen JK, Wan HT, Zhang YY (2016), Protective effects of Yinhuapinggan granule on mice with influenza viral pneumonia. Int Immunopharmacol 30, 85–93. [Google Scholar]
  • Peng XQ, Zhou HF, Zhang YY, Yang JH, Wan HT, He Y (2016), Antiviral effects of Yinhuapinggan granule against influenza virus infection in the ICR mice model. J Nat Med 70, 1, 75–88. [CrossRef] [PubMed] [Google Scholar]
  • Li GQ, Zhao J, Tu ZT (2013), Treating influenza patients of wind-heat affecting Fei syndrome by Jinhua Qinggan granule: a double-blinded randomized control trial. Chin J Integr Trad West Med 33, 12, 1631–1635. [Google Scholar]
  • Lin JR, Zheng WW, Zeng GX, Lin QZ (2020), Study on the network pharmacology of Jinhua Qinggan granules in the treatment of COVID-19. Zhongyaocai 2020, 8, 2074–2080 [Google Scholar]
  • Zheng J, Xiang X, Xiao B, et al. (2018), Xuebijing combined with ulinastation benefits patients with sepsis: A meta-analysis. Am J Emerg Med 36, 3, 480–487. [Google Scholar]
  • Li J, Olaleye OE, Yu X, et al. (2019), High degree of pharmacokinetic compatibility exists between the five-herb medicine XueBiJing and antibiotics comedicated in sepsis care. Acta Pharm Sin B 9, 5, 1035–1049. [CrossRef] [PubMed] [Google Scholar]
  • Zhang CY, Zhang S, Wang W, Jiang XQ (2020), Clinical observation of Xuebijing in the treatment of COVID-19. Chin J Hosp Pharm 2020, 1–5. [Google Scholar]
  • Prompetchara E, Ketloy C, Palaga T (2020), Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 38, 1–9. [Google Scholar]